近年來,新一代電動(dòng)汽車(xEV)的進(jìn)一步普及,促進(jìn)了更高效、更小型、更輕量的電動(dòng)系統(tǒng)的開發(fā)。特別是在驅(qū)動(dòng)中發(fā)揮核心作用的主機(jī)逆變器系統(tǒng),其小型高效化已成為重要課題之一,這就要求進(jìn)一步改進(jìn)功率元器件。
另外,在電動(dòng)汽車(EV)領(lǐng)域,為延長續(xù)航里程,車載電池的容量呈日益增加趨勢。與此同時(shí),要求縮短充電時(shí)間,并且電池的電壓也越來越高(800V)。為了解決這些課題,能夠?qū)崿F(xiàn)高耐壓和低損耗的SiC功率元器件被寄予厚望。
近日,半導(dǎo)體制造商ROHM開發(fā)出“1200V 第4代SiC MOSFET”,非常適用于包括主機(jī)逆變器在內(nèi)的車載動(dòng)力總成系統(tǒng)和工業(yè)設(shè)備的電源。
對于功率半導(dǎo)體來說,當(dāng)導(dǎo)通電阻降低時(shí)短路耐受時(shí)間就會(huì)縮短,兩者之間存在著矛盾權(quán)衡關(guān)系,因此在降低SiC MOSFET的導(dǎo)通電阻時(shí),如何兼顧短路耐受時(shí)間一直是一個(gè)挑戰(zhàn)。
此次開發(fā)的新產(chǎn)品,通過進(jìn)一步改進(jìn)ROHM獨(dú)有的雙溝槽結(jié)構(gòu),改善了二者之間的矛盾權(quán)衡關(guān)系,與以往產(chǎn)品相比,在不犧牲短路耐受時(shí)間的前提下成功地將單位面積的導(dǎo)通電阻降低了約40%。
而且,通過大幅減少寄生電容(開關(guān)過程中的課題),與以往產(chǎn)品相比,成功地將開關(guān)損耗降低了約50%。
因此,采用低導(dǎo)通電阻和高速開關(guān)性能兼具的第4代 SiC MOSFET,將非常有助于顯著縮小車載逆變器和各種開關(guān)電源等眾多應(yīng)用的體積并進(jìn)一步降低其功耗。本產(chǎn)品已于2020年6月份開始以裸芯片的形式依次提供樣品,未來計(jì)劃以分立封裝的形式提供樣品。
<特點(diǎn)>
1.通過改善溝槽結(jié)構(gòu),實(shí)現(xiàn)業(yè)界極低的導(dǎo)通電阻
ROHM通過采用獨(dú)有結(jié)構(gòu),于2015年成功實(shí)現(xiàn)溝槽結(jié)構(gòu)SiC MOSFET的量產(chǎn)。其后,一直致力于進(jìn)一步提高元器件的性能,但在降低低導(dǎo)通電阻方面,如何兼顧存在矛盾權(quán)衡關(guān)系的短路耐受時(shí)間一直是一個(gè)挑戰(zhàn)。
此次,通過進(jìn)一步改善ROHM獨(dú)有的雙溝槽結(jié)構(gòu),在不犧牲短路耐受時(shí)間的前提下,成功地使導(dǎo)通電阻比以往產(chǎn)品降低約40%。
2.通過大幅降低寄生電容,實(shí)現(xiàn)更低開關(guān)損耗
通常,MOSFET的各種寄生電容具有隨著導(dǎo)通電阻的降低和電流的提高而增加的趨勢,因而存在無法充分發(fā)揮SiC原有的高速開關(guān)特性的課題。
此次,通過大幅降低柵漏電容(Cgd),成功地使開關(guān)損耗比以往產(chǎn)品降低約50%。